
International Journal of Computer Trends and Technology Volume 68 Issue 1, 42-44, January 2020

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V68I1P110 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

P2P Networks – Pirates Prevention

Sudha.V.S
1
,

Sharada M Kori

2
, Gouri C K

3
,

Sharada G Kulkarni

4
, Shubhda S Kulkarni

5
, Pankaja B Patil

6

1,2,3,4,5,6,
Assistant Professor, Department of CSE, Gogte Institute of Technology, Belagavi.

Received Date: 20 November 2019

Revised Date: 15 January 2020

Accepted Date: 23 January 2020

Abstract - P2P networks deal with delivering large files to

a massive number of users. Hence piracy is the main

source of violations of the content distributed within the

boundary of a P2P network. The paid clients called the

colluders illegally share copyrighted files with unpaid

clients called pirates. We propose a technique to stop

illegal file downloading by pirates. The pirates are

detected by the use of time-stamped tokens assigned to

each peer in the network. Detected pirates will receive

poisoned chunks in their repeated attempts. We propose a

content poisoning approach to stop copyright violation of

the P2P network. Thus pirates are not provided with a

chance to download the file successfully intolerable time.

Keywords - Content poisoning, P2P networks, Network

security.

I. INTRODUCTION

Collusive piracy is the main source of property

violations within the boundary of a P2P network[1]. The

main sources of illegal file-sharing are peers who ignore

copyright laws and collude with pirates. To solve this peer

collusion problem, we propose a copyright-compliant system

for legalized P2P content delivery. Our goal is to stop

collusive piracy within the boundary of a P2P content

delivery network.

 A P2P network is enhanced with the advantages of

traditional content delivery networks where a large number of

content servers was used over the globe. The content

distributed replicated the contents on many servers.

P2P networks improve the availability of the content, and

hence any peer can serve as a content provider. Because all

peers are able to provide the content of the file, any illegal

user can download the file from these peers by making a

request.

Content poisoning[2] is implemented to respond to the

pirate’s request with poisoned chunks of the actual file

requested by the pirate. Our scheme stops pirates from

downloading files, even in the presence of colluding peers.

II. OUR APPROACH

We use a content poisoning technique to prevent

collusive piracy that stops copyright violations in

P2Pnetworks.

 Each peer is identified with an endpoint address. A

peer authentication protocol is developed that could be

used by each peer to reveal itself as a legitimate peer. Thus

an unauthorized peer is identified as a pirate as that peer

fails to reveal itself as a legitimate peer.

Once a peer is identified as a pirate, its request will

not be denied. Instead, all the clients will be sending

poisoned chunks of the file. Finally, the pirate will be

receiving a mixture of poisoned chunks from the paid

clients and the clean chunks from the colluders. This will

extend the download time of the pirate to a level beyond

the practical limit.

III. P2P NETWORK ARCHITECTURE

The network is built over a large number of peers. As

illustrated in fig 1. there are four types of peers that coexist

in the P2P network: clients (honest or legitimate peers),

colluders (paid peers sharing contents with others without

authorization), bootstrap agents (trusted peers operated by

content owners for file distribution), and pirates (unpaid

clients downloading content files illegally) To join the

system, clients submit the requests to a transaction server that

handles purchase content. The bootstrap agent generates a

private key for secure communication among the peers. The

transaction server and bootstrap agent are only used initially

when peers are joining the P2P network. With IBS, the

communication between peers does not require an explicit

public key because the identity of each party is used as the

public key.

Paid clients, colluders, and pirates are all mixed up

without visible labels. Our copyright-protection network is

designed to distinguish them automatically. Each client is

assigned with a bootstrap agent as its entry point

In P2P Network

four types of peer

co exist:

TR

AN

SA

CTI

ON

CP

CO

G

Fig. 1 A Trusted P2P Network
Architecture

Sudha.V.S et al. / IJCTT, 68(1), 42-44, 2020

 43

A. Peer Joining Process

Identified by user ID and the file by file ID. Each

legitimate peer has a valid token. The token is only valid for a

short time, so a peer needs to refresh the token periodically.

To ensure that peers do not share the content with pirates, the

trusted P2P network modifies the file-index format to include

a token and IBS peer signature. Peers use this secured file

index in inquiries and download requests. Seven messages are

specified below to protect the peer joining process:

Msg0: Content purchase request;

Msg1: Bootstrap Agent Address, Ek(digital_receipt,

Bootstrap- Agent_session_key);

Msg2: Adding digital signature Ek(digital_receipt);

Msg3: Authentication request with userID, fileID, Ek

(digital_receipt);

Msg4: Private key request with a private key request

(observed peer address);

Msg5: PKG replies with privateKey;

Msg6: Assign the authentication token to the client.

Peers identify the pirates by checking the validity of

extra signatures in file indexes. The trusted P2P applies this

protection to share clean content exclusively among the peers

and uses content poisoning techniques against the pirates.

IV. PEER AUTHORIZATION PROTOCOL

A. Token Generation
The PAP protocol consists of two integral parts: token

generation and authorization verification. When a peer joins

the P2P network, it first sends an authorization request to the

bootstrap agent. All messages between a peer and its

bootstrap agent are encrypted using the session key assigned

by the transaction server at purchase time. The authorization

token is generated by Algorithm 1 specified below. A token is

a digital signature of a three tuple: {peer endpoint, file ID,

time-stamp} signed by the private key of the content owner.

Since the bootstrap agent has a copy of the digital receipt sent

by the transaction server, verifying the receipt is thus done

locally. The Decrypt (Receipt) function decrypts the digital

receipt to identify the file λ. The Observe (requestor) returns

with the endpoint address p. The Owner Sign (λ,p, ts) function

returns with a token. Upon receiving a private key, the

bootstrap agent digitally signs the file ID, endpoint address,

and time-stamp to create the token. The reply message

contains four tuples: {endpoint address, peer private key,

time-stamp, token}. The reply message from a bootstrap agent

is encrypted using the assigned session key.

B. Peer Authorization Protocol

The PAP protocol is formally specified below. A client

must verify the download privilege of a requesting peer

before

Clean file chunks are shared with the requestor. If the

requestor fails to present proper credentials, the client must

send poisoned chunks, as shown in Fig. 3. In PAP, a

download request applies a token T, file index Ø, time-stamp

Algorithm 1: Token Generation
Input: Digital Receipt

Output: Encrypted authorization token T

Procedures :
01: if Receipt is invalid,

02: deny the request;

03: else

04: λ = Decrypt(Receipt);

 // λ is file identifier decrypted

from receipt //

05: p = Observe(requestor);

 // p is endpoint address as peer

identity//

06: k = PrivateKeyRequest (p);

 // Request a private key for user at

p //

07: Token T = OwnerSign(f, p, t
s
)

 // Sign the token T to access file f //

08: Reply = { k, p, t
s
, T}

 // Reply with key, endpoint address,

timestamp, and the token //

09: SendtoRequestor{Encrypt(Reply)}

 // Encrypt reply with the session key

//

10: end if

Fig. 3 The PAP detects a pirate upon illegal download

request.

Sudha.V.S et al. / IJCTT, 68(1), 42-44, 2020

 44

ts, and the peer signature S. If any of the fields are missing,

the download is stopped. A download client must have a valid

token T and signature S. Two pieces of critical information

are needed: public key K of PKG and the peer endpoint

address p. Algorithm 2 verifies both token T and signature S.

File index Ø(λ,p) contains the peer endpoint address p and the

file ID λ. Token T also contains the file index information and

ts indicating the expiration time of the token. The Parse

(input) extracts time-stamp ts, token T, signature S, and index

Ø from a download request. The function Match (T, ts, K)

checks the token T against public key K. Similarly, Match

(S,p) grants access if S matches with p.

V. CONCLUSION AND FUTURE WORK
 Our protection scheme gives higher priority to satisfy

honest clients. Putting poisoning tasks at lower priority

reduces the upload overhead. With secure file indexing and

assistance from a peer reputation system, colluding peers are

detectable. The system stops piracy by poisoning pirates with

excessively long download overhead in the presence of a

large number of colluders. With the time-stamped

authorization token, the PAP protocol enables clients to detect

illegal download attempts from a pirate without

communicating with a central authority. The proposed system

is more effective to protect large files. The proposed PAP

protocol detects colluders and pirates and applies chunk

poisoning selectively. These extra activities add only limited

extra workload or traffic to the network. These overheads are

distributed among all distribution agents and clients, making

their effects almost negligible on individual clients.

File-level reputation system posts a new challenge to work

with DRM systems in P2P content delivery. The integration

of selective poisoning with a reputation system and DRM will

widen the CDN application domains. Combining DRM and

reputation systems to protect P2P content delivery networks

will lead to a total solution to the online piracy problem.

REFERENCES
[1] S. Androutsellis-Theotokis and D. Spinellis.,A Survey of Peer-to-

Peer Content Distribution Technologies., ACM Computing
Surveys

[2] N. Christin, A.S. Weigend, and J. Chuang.,Content Availability,

Pollution and Poisoning in File-Sharing P2P Networks.
[3] RajkumarBuyya, Al-Mukaddim Khan Pathan, James Broberg and

ZahirTari., A Case for peering of Content Delivery Networks

[4] B. Krishnamurthy, C. Wills, and Y. Zhang., On the Use and
Performance of Content Distribution Networks.

Algorithm 2: Peer Authorization Protocol

Input: T = token, ts = timestamp, S = peer

signature,

 and Ø(λ, p) = file index for file λ at

endpoint p

Output: Peer authorization status

 True: authorization granted

 False: authorization denied

Procedures :

01: Parse (input) = { T, t
s
, S, Ø(λ, p) }

 // Check all credentials from a

input request //

02: p = Observe(requestor);

 // detect peer endpoint address p

//

03: if {Match (S , p) fails},

 //Fake endpoint address p

detected //

 return false;

04: endif

05: if {Match(T ,t
s

,K) fails},

 return false;

 // Invalid or expired token

detected //

06: endif

07: return true;

